
ENGINE: Mobile Robotics
Project: Explorer

Contents

1 Introduction 2
1.1 Simulation Overview . 2

1.1.1 Mobile Robot Turtlebot3 Burger . 3
1.1.2 Simulation Environment GAZEBO . 3

1.2 Build the docker container . 4
1.2.1 Prerequisites . 4
1.2.2 Build Container . 4
1.2.3 Run Container . 5

1.3 Available Components . 5
1.4 Implemented Software Overview . 7
1.5 Debugging with gdbgui . 7

2 Algorithms 8
2.1 Rapidly Random Search Tree Exploration [easy] . 8
2.2 Wall Follow Exploration [normal] . 9

3 Exercise Walk-through 9

4 Lessons Learned 11

A Implemented Functions- Readme.md 12
A.1 Bringup Simulation . 12
A.2 FHTW Explorer Node . 12

A.2.1 1. fhtw_explorer Class . 12

1

1 Introduction

This is the manual for the maze exploration exercise of the course ”ENGINE: Mobile Robotics”.
During this project you will learn how to work with:

�Derived C++ classes

�Virtual functions

�LaserScan Messages

�ROS Actions

In this project you should design and implement an high-level exploration algorithm that can
explore as much area as possible in a given time. For this you can use any approach that you
see fit for this task, e.g.:

�Rapidly Random Search Tree Exploration

�Wall-Follow Exploration

�Frontier Exploration

...

This project should provide you a basic idea of how exploration tasks are implemented in a
mobile robotics system. Therefore you are going to use the Robot Operating System (ROS),
the GAZEBO physics engine where a world and a mobile robot are simulated. All of this will be
run inside a Docker container which will be built in the next section1.

1.1 Simulation Overview
The remaining part of this chapter introduces the simulation environment GAZEBO as well as
the simulated mobile robot Turtlebot3 Burger.

1If you have any questions feel free to email to engine@technikum-wien.at

2

mailto:engine@technikum-wien.at

1.1.1 Mobile Robot Turtlebot3 Burger

The TurtleBot3 Burger is a cost-effective, personalized robot kit driven using open source soft-
ware developed by Robotis Bioloid2. It is equipped with necessary sensors to build a map of
the environment and operate in it. Figure 1 visualizes the components of the Turtlebot3 Burger.

Figure 1: System overview Turtlebot3 Burger modified taken from:
https://www.slideshare.net/RobotisJapan/170520-10ros-tb3

The 360°LIDAR is utilized during this exercise to build a map of the environment using gmap-
ping3 as well as to localise itself at the same time using AMCL4. This is known as the Simulta-
neous Localisation and Mapping5 (SLAM) problem.

1.1.2 Simulation Environment GAZEBO

Robot simulation is an indispensable tool in the toolbox of every robotic engineer. A well-
designed simulator allows you to quickly test algorithms, design robots, perform regression
tests and train AI systems using realistic scenarios. Gazebo provides the ability to precisely
and efficiently simulate populations of robots in complex indoor and outdoor environments. A
robust physics engine, high-quality graphics and comfortable programmatic and graphical inter-
faces are available.
This exercises utilizes GAZEBO as a physics simulation engine to simulate the above men-
tioned actuators and sensors of the mobile robot as well as a automatically generated maze.

2http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
3http://wiki.ros.org/gmapping
4http://wiki.ros.org/amcl
5https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

3

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

Figure 26 visualizes a running simulation of said maze and mobile robot.

Figure 2: Simulation overview

1.2 Build the docker container
The remaining part of this chapter walks you through the building procedure of the docker
container.

1.2.1 Prerequisites

1. Install Docker (see: click me)

2. Install VcXsrv as X11-Server (only on Windows) (see: click me)

1.2.2 Build Container

1. Download all necessary files from [here](link_zu_datein)

2. Open downloaded folder in explorer

3. Double click on "build_docker_container.bat"

6Note that when you start the explorer node as described below (see 3) this Graphical User Interfaced will not be
opened due to performance optimisation

4

https://hub.docker.com/?overlay=onboarding
https://sourceforge.net/projects/vcxsrv/files/latest/download

1.2.3 Run Container

�Start VcXsrv (XLaunch) with following configuration7:

Figure 3: Configuration for the VcXsrv X-Server

�Double click on "run_docker.bat"

�Start programming!

1.3 Available Components
The files in ”catkin_ws/fhtw_maze_explorer” provide you with a skeleton ROS package which
you will use throughout this project. This folder is included inside of the docker environment
(/root/catkin_ws/src/fhtw_maze_explorer). It contains documentation, source-code as well as a
GAZEBO world for simulation.

If you are not using the provided docker container but your own ubuntu computer make sure
to install (either via binary or source) the following ROS packages:

�move-base*

�turtlebot3-*

�dwa-local-planner

�global-planner

�gmapping

�rosdoc-lite (only if you want to build the documentation)

7Make sure that VcXsrv is enabled for both public networks and private networks in the firewall.

5

�gdbgui (only if you want to debug your ROS node)

The files in ”fhtw_maze_explorer” are described in the following paragraph:

1. Readme.md : Contains a brief overview of the implemented functions in the fhtw_explorer
base class. A more human read-able version of this is attached to this document appendix
A. To view in depth documentation you can look at the documentation inside the source-
code or use the doc folder containing the documentation in html-style. To view it just open
the ”annotated.html” file in doc/html with a browser (Only work required if you want the
documentation)

2. CMakeLists.txt : This file contains all necessary information regarding the compiler and
linker8. ROS uses this file to create executables and libraries.(No extra work required)

3. package.xml : This file defines properties about the package such as the package name,
version numbers, authors, maintainers, and dependencies on other catkin packages. (No
extra work required)

4. src/ : This folder contains the ready to use source codes

�main.cpp : Defines the ROS node and initializes the explorer class. Here you can
also set the Logging-Level (Info, Debug, Warn,...). Here you need to include your
derived class. See ”inlcude/fhtw_explorer/example.hpp”

�fhtw_explorer.cpp : The declaration of the fhtw_explorer base class. (No extra work
required, but you can adapt it if you want.)

5. inlcude/fhtw_explorer/ :

�fhtw_explorer.hpp : The corresponding headerfiles for the fhtw_explorer base class.
(No extra work required, but you can adapt it if you want.)

�example.hpp : Is an example file that shows how to override the base class functions.
Here you will have to override the base class sample and compare_nodes function
to implement your explorer algorithm.

6. launch/ :

�maze_explorer.launch : This is the launchfile for the explorer package. It spawns
the GAZEBO world and the turtlebot, starts the tfs for the turtlebot, the SLAM node
(gmapping) as well as the move_base stack. Further it starts rviz for visualization
and finally it starts the explorer node.
If you set the debugging parameter to true, your browser will open and debugging
session of gdbgui9 will launch.

7. maps/ : Contains the GAZEBO world.
8http://wiki.ros.org/catkin/CMakeLists.txt
9For a basic tutorial see: https://www.gdbgui.com/gettingstarted/

6

http://wiki.ros.org/catkin/CMakeLists.txt
https://www.gdbgui.com/gettingstarted/

8. config/ : Contains the configuration files for the explorer, which are loaded via the launch-
file to the ROS parameter server, and the configuration for the rviz visualization.

9. cfg/ : Defines the parameter that can be dynamically changed via rqt_reconfiugre.

10. scripts/ : Contains all scripts that handle the maze generation as well as the bringing up
the simulation environment.

1.4 Implemented Software Overview
The following section provides a brief overview of how the ROS components in this project work
together using the following figure 4.

Figure 4: Rosgraph

�robot_state_publisher: This node loads a URDF Turtlebot model, where all tfs of
the turtlebot are described. It therefore provides static tf broadcasters for the Turtlebot’s
coordinate transformations.

�turtlebot3_slam_gmapping: Is the SLAM (gmapping) node used during this project.
It subscribes to the LIDAR messages (/scan) and publishes the current pose of the robot
to the fhtw_explorer node.

�fhtw_explorer: This is the exploration node. It publishes a goal via a Move-
Base ActionServer (/move_base/goal) and subscribes to the MoveBase Feedback
(move_base/result).

�move_base: Handles the path planning and goal execution. Publishes velocity com-
mands (/cmd_vel) to gazebo to control the robot and subscribes to the odometry (/odom)
published by the simulated robot.

1.5 Debugging with gdbgui
gdbgui is a browser-based frontend to gdb, the gnu debugger. You can add breakpoints, view
stack traces, list variable values of current stack and more in C, C++, Go, and Rust!

7

Since it is a web-based frontend you have to utilize a browser of your choice and simply paste
<docker container ip>:500010 in the url bar of your browser. An example is listed in the following
figure.

Figure 5: gdbgui frontend with url set to: ”127.0.0.1:5000”

To find out more about debugging with gdbgui have a look at the following links:

�https://www.gdbgui.com/

�http://www.yolinux.com/TUTORIALS/GDB-Commands.html

2 Algorithms

The following chapter provides you with pseudo-code for each of the initially mentioned explo-
ration algorithms as well as additional food for thought, but keep in mind that these algorithms
are only guidelines. If you want to implement a different algorithm or adapt an algorithm feel
free to do so.
Which ever algorithm you chose, keep in mind that the LIDAR simulated on the Turtlebot only
has a range of 3.5m.

2.1 Rapidly Random Search Tree Exploration [easy]

Rapidly-exploring random tree (rrt) is a search algorithm that randomly searches high-
dimensional search spaces for possible paths. In robotics, the algorithm and its variations
are often used for motion planning or exploration tasks.
The pseudo-code 1 gives an overview of the steps needed to implement an rrt for exploration.
10You can get the ip of your running container by running ”hostname -I” inside the container

8

https://www.gdbgui.com/
http://www.yolinux.com/TUTORIALS/GDB-Commands.html

Algorithm 1 RRT Exploration
1: procedure RRT

2: for < itr ≤MAXitr > do
3: ~n = 〈~n, get_position()〉 . ~n . . . visited nodes

4: i ∼ U(0, n) . Take random sample from LIDAR msgM
5: p′ = gen_pose(M[i]) . Generate a pose using the sample andM
6: p = transform_pose(p′) . Transform p’ to map coordinate frame
7: if < compare_nodes(p, ~n) > then
8: sendGoal(p)

9: while < curr_time− start_time <= timeout > do
10: wait_for_feedback()
11: end while
12: end if
13: end for
14: end procedure

2.2 Wall Follow Exploration [normal]

Exploration strategies differ in the extent to which the Development map is used to control
the explorative movements. Wall trackers solely rely only on the measurements of distance
sensors, which measure the distances to the walls to explore an environment.
The following pseudo-code 2 gives an overview of the steps needed to impement an wall-
follower for exploration.

Algorithm 2 Wall Follow Exploration
1: procedure FOLLOW_WALL

2: find_nearest_wall(M) . Find the nearest wall using the LIDAR msgM
3: drive_to_nearest_wall(M) . Geometrically calculate the desired distance to the wall

and publish it.
4: while < itr ≤MAXitr > do
5: calc_next_pose() . Here is the actual wall following executed
6: itr ++

7: end while
8: end procedure

9

3 Exercise Walk-through

The following chapter walks you through the mandatory steps of creating and testing your im-
plemented algorithms.

1. After you have started the container (see 1.2.3) you can validate if everything is setup
correctly by executing the command ”start-maze.sh”. After you pressed "enter" on the
"Finished maze generation, Press enter to start gazebo" message, a number of windows
should appear which are depicted in figure 6.

Figure 6: On an successful build the following windows are going to start

As time goes on the mobile robot explores the map using an rrt algorithm.
The sample code only works until the workspace is built for the first time, because then
the binary files are overwritten.

2. Implement your explorer algorithm! For this use the example.hpp (see 5)

3. To test your explorer code execute the following steps:

a) cd /root/catkin_ws #change directory to your catkin workspace

b) catkin_make #build the workspace including the fhtw_maze_explorer package

c) start-maze.sh [-Options] #run the maze-generator and launch GAZEBO, RVIZ and your ROS node

�Options:

[-s generate a maze of size 10 x 10]

[-m generate a maze of size 25 x 25]

[-l generate a maze of size 50 x 50]

[-d start debugging for maze_explorer]

10

4 Lessons Learned

After you have completed the project you should be capable of answering the following ques-
tions:

�What is the difference between actions and services in ROS?

�How are LaserScan messages structured?

�How can you debug a ROS node?

-How can rosnode info help with that?

11

A Implemented Functions- Readme.md

A.1 Bringup Simulation
To bringup the simulation with different parameters see: 3

A.2 FHTW Explorer Node
This readme file gives a short overview about the functionality of the fhtw_explorer ROS pack-
age. For an in depth documentation see annotated.html (open this with a browser) or see the
documentation directly in the code (Not recommended)

A.2.1 1. fhtw_explorer Class

Defined in fhtw_explorer.hpp and implemented in fhtw_explorer.cpp.
This is the parent class from which students should derive their children’s classes. It is not
recommended to edit the class members, but feel free to do.
The following functions are provided by this class:

�fhtw_explorer: Constructor of Class

�callback_reconfigure: Dynamically updating the configuration variables defined in con-
fig.yaml respectively explorer.cfg

�callback_goal_done: Recieve the state of a finnished goal of the move_base Action
Server

�callback_goal_feedback: Recieve feedback of the current goal

�callback_goal_active: Callback once on sending goal

�pub_marker_goal: Publish a visualisation marker in rviz of the current goal

�pub_marker_nodes: Publish a visualisation marker of the already visited nodes

�callback_lidar: Store the current LIDAR message

�plan: Executes all planning functions

12

../catkin_ws/src/fhtw_maze_explorer/doc/html/annotated.html
../catkin_ws/src/fhtw_maze_explorer/include/fhtw_maze_explorer/fhtw_explorer.hpp
../catkin_ws/src/fhtw_maze_explorer/src/fhtw_explorer.cpp
../catkin_ws/src/fhtw_maze_explorer/config/config.yaml
../catkin_ws/src/fhtw_maze_explorer/config/config.yaml
../catkin_ws/src/fhtw_maze_explorer/cfg/explorer.cfg

Figure 7: Overview of planning functions

�get_tf: Get the transform between the map_frame and robot_frame

�append_nodes: Appends the current robot pose (in relation to map_frame) to vis-
ited_nodes

The following functions must be overwritten by the students child class as they are (pure)
virtual:

�~fhtw_explorer: The Destructor of the class. If you allocate (new) any memory you must
free (del) it here

�compare_nodes: This is a function that compares the current sampled goal temp_goal
with the already visited nodes visited_nodes. Returns true if the current goal is
accepted, else false

�sample: This function is used to generate the next goal (temp_goal) for the move_base
Action Server. Return true if you want to continue else return false

13

	Introduction
	Simulation Overview
	Mobile Robot Turtlebot3 Burger
	Simulation Environment GAZEBO

	Build the docker container
	Prerequisites
	Build Container
	Run Container

	Available Components
	Implemented Software Overview
	Debugging with gdbgui

	Algorithms
	Rapidly Random Search Tree Exploration [easy]
	Wall Follow Exploration [normal]

	Exercise Walk-through
	Lessons Learned
	Implemented Functions- Readme.md
	Bringup Simulation
	FHTW Explorer Node
	1. fhtw_explorer Class

