
1 Task Controlling the Robot

Control the robot via an OPC UA client.

Before you can program the fourth task, you should have the UAExpert program installed.
With this OPC UA client you can search the namespace of the puzzle bot. You also have the
possibility to control the puzzlebot and follow it via the camera. To program an OPC UA client
you need the namespace and the node identification number (Node-ID) of the respective object,
variable and method. You can read these using the UAExpert program.

To program the client, start by creating auxiliary variables.

• Variable for the username

• Variable for the password

• variable for the hostname

• Variable for the port

To initialize the client use the function client("path") The function returns a client. The path
in the function must be specified in the format "opc.tcp://username:password@hostname:port"
The hostname of the puzzlebot is engine.ie.technikum-wien.at and the port has the number
4840.

With the function client.connect() you establish a connection to the OPC UA server of the
puzzlebot. Now you have created a session with the name client which is available for the next
steps. With the function client.get_namespace_index("path") you can define the namespace
and save it into a variable. This function returns the namespace. For the path to work in the
namespace of the puzzlebot please enter opc.tcp://engine.ie.technikum-wien.at/PuzzleBot
For the connection via UA Expert you will be provided with a file which you have to open. When
you have established the connection, you will see the namespace of the server on the left side
under the tab Address Space. In the object Puzzlebot you will find all important variables and
methods to control the Puzzlebot. Click on a variable or method, then you will see the item
Node-ID on the right side under the Attributes tab. With this node-identification number you can
read and write the respective variable in the program or call the method. Figure 1 shows parts
of the UAExpert program when connected to a test server.

The node identification number is in theory always the same for the same variable or method.
However, if a change is made on the OPC UA Server, a variable or method is added or removed,

1



Figure 1: Part of UAExpert version 1.5.1.331 connected to a test server

it is no longer guaranteed that the node identification number still matches. For this task read
out all node IDs you need.

The function Client.get_node("Node-ID") returns a node.

Hinweis: Keep in mind that a node can also be an object containing several variables and
methods. You can address an object as well as variables and methods directly via the node ID.

With the function Node.get_value() you can read the variable value. If a node has subordinate
nodes, then this node must be designated as parent. With the function Parent.get_children()

and a loop you can read the child variables and methods.

Next call with call_method(node,value) the function of the puzzle bot, which is responsible for
its axis movement. Pass the values from task 3 to the function and the puzzlebot will move to
the position where the center of gravity of the selected object is located. By calling the PICK

method, objects can be lifted with the magnet. If you want to place the objects at a different
position, you can do this with the PLACE method of the Puzzlebot.

Note: Please keep in mind that the puzzlebot needs some time to execute your instructions. It
is therefore advisable to implement a delay with the function time.sleep(seconds)

Finally, be sure to terminate the connection to the Puzzlebot with CLIENT.disconnect() The
OPC UA server of the puzzlebot is configured in such a way that a maximum of one session
per user can be created.

2



This completes task 4. Use the libraries and function listed in chapter 1.1 to program task 4.
Please note that functions from tasks 1, 2 and 3 can be used in the same way.

1.1 Functions and Libraries Exercise 4

Libraries:

• from opcua import ua, uamethod, Client

• import time

• (import cv2)

Functions:

• Client() Defining a connection/client

• connect() Connect to the server

• get_namespace_index() Gets the index for a namespace

• get_node() Addressing a specific node

• get_value() Read a value

• set_value() Writing a value

• call_method() Calling a method

• disconnect() Terminate connection with the server

3


	Task Controlling the Robot
	Functions and Libraries Exercise 4


